Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode

نویسندگان

  • Carlos Alvarado Chavarin
  • Carsten Strobel
  • Julia Kitzmann
  • Antonio Di Bartolomeo
  • Mindaugas Lukosius
  • Matthias Albert
  • Johann Wolfgang Bartha
  • Christian Wenger
چکیده

Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μ S was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode

This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...

متن کامل

Improvement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study

By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...

متن کامل

Analysis of Kirk Effect in Nanoscale Quantum Well Heterojunction Bipolar Transistor Laser

In this paper, we present an analytical model to analysis the kirk effect onstatic and dynamic responses of quantum well heterojunction bipolar transistor lasers(HBTLs). Our analysis is based on solving the kirk current equation, continuityequation and rate equations of HBTL. We compare the performance (current gain,output photon number and small signal modulation bandwi...

متن کامل

Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes

Related Articles Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes Appl. Phys. Lett. 99, 143101 (2011) Efficiency droop behaviors of the blue LEDs on patterned sapphire substrate J. Appl. Phys. 110, 073102 (2011) Effect of organic bulk heterojunction as charge generation layer on the performance of tandem organic light-emitting diodes...

متن کامل

Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.

Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018